AGENDA

Meeting
May 17, 1967

9:30 a.m. Call to order

1. Approval of minutes of meeting of April 19, 1967.

2. Executive Secretary's Report

3. Geologist's Report

4. Old business
 a. June IOGC meeting

5. New business
 a. Discuss time and method of arriving at decisions
OIL AND GAS CONSERVATION COMMISSION
1624 West Adams - Suite 202
Phoenix, Arizona

Minutes of Meeting
April 19, 1967

Present:
Mr. Lynn Lockhart, Chairman
Mr. Lucien B. Owens, Vice Chairman
Mr. George T. Siler, Member
Mr. Kenneth C. Bentzon, Member
Mr. John Bannister, Executive Secretary
Mr. J.R. Scurlock, Geologist

Absent:
Mr. Hiram S. Corbett, Member

Others Present:
Mr. James J. Fulton
Mr. Darby Hand
Mr. Ray B. Jones, ArkLa Exploration Company
Mr. William S. Livingston, Humble Oil & Refining Co.
Mr. Brian Kirby, ArkLa Exploration Company
Mr. Francis S. Irvine, Kerr-McGee Corporation
Mr. C.F. Miller, Kerr-McGee Corporation
Mr. Henry P. Pohlmann, Navajo Tribe
Mr. James R. Pickett
Mr. P.T. McGrath, U.S. Geological Survey
Mr. John A. Anderson, U.S. Geological Survey
Mr. J. Val Connell, Kerr-McGee Corporation
Dr. Willard Pye, University of Arizona

Meeting was called to order at 9:30 a.m.

Minutes of meeting of March 15, 1967 were approved.

The Executive Secretary's Report and Geologist's Report were accepted for filing.

It was agreed that arrangements be made for three persons to attend the June, 1967 IOCG meeting in Denver, and at the next regular Commission meeting it would be decided who from the Commission would attend.

Meeting adjourned at 10:00 a.m. and the Commission immediately entered into hearing, Case 24, to amend Rule 102.
May 10, 1967

Memo to: Commissioners
From: John Bannister, Executive Secretary
Re: Report of Activity

Since our last meeting conference calls have been set up wherein decisions were reached in Case 24 and Case 25.

I would like to take this opportunity to explain to the Commissioners that it is necessary following a hearing that the Commissioners reach a decision within a "reasonable time." The Attorney General has indicated that a reasonable time is ten days to two weeks in most instances.

In the two cases above referred to, a considerable amount of interest and action of many of the companies were pending, awaiting our decision. It was felt that in order to expedite matters it was necessary to contact the Commissioners by telephone. As you are aware, this practice of conference call communication had been established and followed in the past on hearings.

It has been noted that concern has been expressed by some of our Commissioners as to this method of reaching a decision, and it is felt that the Commissioners should establish among themselves a procedure for concluding a case once it is heard. It is my feeling that should the Commissioners so desire, that no decision be made until the following regular meeting, this would be acceptable if it were pointed out to the participants of the hearing that this would be the case.

I visited the Dineh bi Keyah Field on April 20 and 21. Copies of my notes are enlosed.

As you may be aware, Kerr-McGee would like to take the Governor and the Commission to the Field to view first hand the activities in this area. It is presently contemplated that on June 2nd, at approximately 7:00 a.m., Kerr-McGee will pick...
up the Governor's party and those commissioners in Phoenix, proceed to Flagstaff or Holbrook to pick up commissioners in this area. Kerr-McGee then contemplates flying to the Field for both an aerial and ground inspection, have lunch somewhere, and tentatively return by 5:00 - 6:00 p.m. to Phoenix. Time and date will depend upon availability of the governor.

New Permits:

397: Kerr-McGee #C-1 Navajo, SE SW 33-36N-30E, Apache County

398: Kerr-McGee #E-1 Navajo, SE SE 20-36N-30E, Apache County

399: Kerr-McGee #12 Navajo, SE NE 29-36N-30E, Apache County

400: Humble #2 Navajo 138, SE SE 6-35N-30E, Apache County

401: Humble #1 Navajo 87, SE NE 23-36N-29E, Apache County

402: Kerr-McGee #1 Santa Fe, SW NW 14-19N-27E, Apache County

403: Kerr-McGee #2 Santa Fe, NW SE 19-19N-28E, Apache County

404: Kerr-McGee #3 Santa Fe, SE NW 34-19N-28E, Apache County

405: Kerr-McGee #10 Santa Fe, NW SW 23-20N-27E, Apache County

407: Kerr-McGee #5 Santa Fe, NW NE 23-20N-28E, Apache County

408: Kerr-McGee #6 Santa Fe, NW NW 9-19N-29E, Apache County

409: Kerr-McGee #7 Santa Fe, NE NE 2-18N-29E, Apache County

411: Kerr-McGee #9 Santa Fe, NE NE 27-17N-29E, Apache County

It will be noted from the above permits that Kerr-McGee has begun strat test exploration program (Permits 402 through 411) in the area south and east of Pinta Dome. These holes will not be drilled with the intention to produce, but merely gain information. It is Kerr-McGee's intention at the present time.
to plug each hole upon completion. At this writing two (#1 and #10) of the ten tests have been completed and plugged.

The Dineh bi'Keyah has created much additional work and expense upon the Commission. As you have long been aware, toward the end of each quarter is a very critical period concerning money for commissioner's salaries. At our last two meetings the Commission, in addition to the regular meeting, heard two cases. It is felt that the burden imposed upon the commissioners in trying to assimilate this much technical information is unfair and it would be far preferable to space our hearings. However, in order to do this it would be necessary that additional money be available for payment of the commissioners.

You have long been aware too of the critical staffing problem in this office. Our secretary, Mrs. Rushton, is bearing an unfair burden as are both Mr. Scurlock and I. The administrative work of this office now prevents Mr. Scurlock or me from being in the field at times when we should.

In addition to this, travel money, both in-state and out-of-state, will soon have reached a critical point. Looking forward to our next fiscal year, which begins July 1, it is contemplated that lack of sufficient funds will greatly hamper the activities of the Commission.

Consequently it is suggested that representatives of the Commission should approach Governor Williams to request an amendment to our budget to allow sufficient funds for the Commission to effectively function. Inasmuch as it is contemplated that a special session of the Legislature will be called, the Governor could include a supplemental appropriation for the Commission in this call.

It is also my suggestion that the commissioners so approve, a delegation be appointed to seek audience with the Governor at the first available opportunity for the purposes of the following:

(a) secure a substantial salary increase for the current staff.

(b) secure sufficient additional money for salaries of the commissioners so that a minimum of 10 additional days per year may be available for commissioner's purposes.

(c) secure an increase in out-of-state travel from $2,500 to $3,500, and combine both in-state and out-of-state travel into one fund instead of two separate funds.

(d) secure the necessary money to hire an administrative assistant, and if possible, one additional steno to hopefully alleviate the burden now upon Mrs. Rushton.
(e) With the hearing burden that will now be thrown on the Commission due to Dineh bi Keyah Field, an available petroleum engineer will become a necessity. In order to avoid undue expenditure it is suggested that funds be secured, perhaps in the neighborhood of $200 per month to maintain Mr. Walsh as a petroleum engineer consultant. This would permit Mr. Walsh to remain in position to avoid conflicts of interest and in this amount it would include one trip to Phoenix to attend our meetings or hearings. If more were to be demanded it would be necessary to pay him his customary fee. In this manner for an expenditure of $2,400 to $3,000 we would have a consultant permanently available.

It is suggested that the entire budget be reviewed prior to going to the Governor should the commissioners decide to take this approach.

In the Harless matter, the Attorney General has advised that the formal written decision of the court has been rendered. Some of the interested parties have requested a meeting with the Attorney General prior to any hearing or further action on our part. Mr. Green intends to give the Commission a letter indicating the full steps to be taken in this matter.

I anticipate that it is his desire that a hearing be scheduled, perhaps June 21, and that the Attorney General will change his mind and request that we publish new notices. Undoubtedly the Attorney General will desire at least 30 days to take depositions from Mr. Harless.

As a result of the current Arizona discovery and the wide publicity it has been receiving, both locally and nationally, the State Land Department has enjoyed a great increase in leasing activities. We have been informed that the federal leasing in the Bureau of Land Management are likewise having greatly increased activity.

The Water Quality Control Council has scheduled hearings in Yuma and in Kingman on May 23 and May 25. A later meeting is scheduled for Phoenix. It will be necessary that I be out of the office on these days.
May 11, 1967

Memo to: Commissioners
From: J.R. Scarlock, Geologist
Re: Report of Activities

April 4, Sedona: checked Harrless rig. No activity. No change.

April 5: Checked J.C. Mann Drilling Co. well (located 10 miles south Mexican Water). Total depth 6031' in pre-Cambrian. No show encountered.

April 25-26-27, Dineh Bi Keyah Field. Accompanied Commissioner Siler to see the new oil field which was alive with activity. Saw trucks (capacity 275 barrels) loading oil from the tank battery at Kerr-McGee #1 Navajo. (Tank battery represents 7,000 barrels storage.) Small amount of gas being flared.

Saw Humble building tank battery. Visited Humble #1 Navajo 138 (a completed well).

Visited Kerr-McGee #3X well (a prolific producer), Kerr-McGee #1B (completed well), Kerr-McGee #2B (drilling).

May 1-3, Anadarko well: Dry hole. Total depth 4242' in granite. The syenite sill (igneous intrusive) pay zone was not present in this well, which ran 170' structurally high to the Kerr-McGee discovery well. No show of oil in this well. Inert gas recovered from drill stem test of Devonian being tested for helium. Only dry hole in the field thus far.

Current Well Status
Kerr-McGee #1 Navajo (discovery well) Tested on April 26: pumped 755 bbls. oil/24 hrs.
Kerr-McGee #2 Navajo Tested April 26: pumped 2907 bbls. oil/24 hrs; made 259 MCF gas. (Note: this well pumped 46,372 bbls. oil in March--doubling Arizona's production.)
Kerr-McGee #3X Navajo. Tested April 26: pumped 2,938 bbls. oil/24 hrs; made 242 MCF gas. (Piping this oil to tanks on #1 Navajo location.)

Kerr-McGee #7 Navajo. Tested April 27: pumped 2,578 bbls oil/24 hrs.

Kerr-McGee #18 Navajo. Well originally drilled to a depth of 3800 ft. Have now moved drilling rig (Pico) back on location. Drilling deeper to Cambrian.

Kerr-McGee 8-1 Navajo. Drilling.

Kerr-McGee 8-2B Navajo. Have run 5 ½'' to total depth of 4,565'. No igneous sill pay zone in this well. Currently testing.

Kerr-McGee #10 Santa Fe (mineral strat test) NW SW 23-20N-27E Apache County (South Pinta Dome Area) Total depth 1,330' in Coconino. Plugged.

Kerr-McGee #1 Santa Fe (mineral strat test) SW NW 14-19N-27E Apache County (South Pinta Dome Area) Total depth 1,417' in Coconino. Plugged.

Humble 138-1 Navajo. Installing Reda pump.

Humble 138-2 Navajo. Moving in rig (Loffland Drl. Co.)

Humble 140-1 Navajo. Drilling 2,942'.

Humble 87-1 Navajo. Drilling.

Note: Kerr-McGee still reports bottleneck situation in trucking out oil. They have surveyed a route for pipeline and have taken bids for such a line.
4-21-67

John Fisher - Kerr-McGee - Area Production Super-
intendent D. S. Byre and me at 7:00 AM at Dinkel Hotel.
Kerr is setting up a tank farm in NE of 29. Will put
in one 30,000 BBL tank and several 5,000 BBL tanks. If field
comes up to expectations will install automatic lease control
equipment. Many locations are high and a trucking job
in winter weather will be difficult. Ultimately a pipeline from
tank farm to A Corners pipeline is planned - approx. 35 miles
long. If this is done, Kerr will take all pumping
controls into Farmington office and each well-pump
flow lines can be controlled from there independent
of weather.

Currently #2 is being produced into tanks at
No. 1 location, eventually production from #2 lease
will be flowed (gravity) to #1 location too. The
#7 is now due of midnight the 29th (gravity)
to #2 location.

Kerr has ordered the E-1 and E-2 completed
prior to May 25th, the next Indian lease sale.
Kerr will undoubtedly go tight on all wells
until then.

Approx. 12 dozers working 24 hrs. a day on
roads, locations, pipeline. Always Orders are
for bring in any and all equipment needed to
proceed at fast pace. Dozers are critical and
Fisher has been given OK to bring dozers in from OKC if necessary.

All personnel met were cautious but reluctant to give info. Due to amount of money being spent and amount of equipment being used, Hess is obviously optimistic as to size and extent, capacity and size of field. Many expressions of delight that discovery in Arizona (NO predrilling) rather than in N. Mex (lpet 75 BPDP Well)

If picture of ambulance shown in hearing is correct, locations N. W. of No. 1 (discovery) should be best locations. According to Pge, Pge said Humble locations all 3 could be too far S. - the 31-1 marginally well and the 32 OK. Hess cannot at this time explain 31's gas a almost total lack of oil, though Pge says that he suspects it could be a purely mechanical problem. Speculation in field and in Farmington is that Humble will make good well - especially since the three tanks are being installed. Hess feels that No. 1 & 3X will be better wells than #2. Still talking of reworking #1 but somewhat fearful that a new facility might alter the Cococino rather than Hess.

D. J. brought back from separator on #7
Kerr has locations ready for # 4, 6, 12, C-1, E-1 & F-1. (or will be ready by 4-27 or 4-28)

It takes approx 2 hr. to go to field from Farmington.

Many large pine trees being cut down for location work. So far Navajos are not charging for location damage or trees cut - although trees must be sawed into specified lengths (depending on dia) and stacked by roads. A large potato field in vicinity of Kerr #1 is only source of location trouble and this apparently can re satisfied by clearing a lane just from the Indian involved.

Kerr-McGee keeping roads in good shape - especially for trucks. Are naturally anxious for Indians to pave the main roads. Some discussion has already been done with Nav. tribe. Nav. receiving 15 1/2% royalty.

No Kerr-McGee core in area. Fisher will send 1 foot or so of core from #2. Says core will almost powder when hit by hammer.

Visited all drilling or finished locations.
Permian Corp. is running 13 tank trucks - each carrying 1 trailer. Each truck makes approx. 7 round trips ea. 12 hrs. - ave. load 700-900 lbs. per trip.

Oil is delivered into 2 Permian tanks (3,000 Bbls. total), loaded from 3 sides (S., W., E.) and pumped by 1 ACT, where it is metered into 4 corners pipeline - destination Compton, Calif. Pipeline under present pumping setup may receive up to 400 Bbls. per hr.

Loading point - 4½ miles S. of Shiprock, N. Mex on Hwy. 666 (Shiprock to Gallup) on W. side of road - approx. 100 yards off of highway.

Pasted Field Price - $2.80 per Bbl. - trucking charge 3.5¢ per Bbl. Kerr-McGee then receives $2.45 per Bbl.

If 4 Corners is unable to accept all of Dineh ki Kayak oil it is likely that the line going into Texas will also be used.

(See pictures attached)
Tanks, Trucks leaving for Deneh bi Keyeh field.

Unloading into Permian Corp. tanks.
Pumps taking from Permian Corp. tanks & pumping into 4-Corners pipeline.
Arizona’s spectacular oil strike tops Rocky Mountain field interest

Joseph A. Kornfeld, President, and
Maury M. Travis, Vice President,
Kornfeld International, Tulsa

NORTHEAST ARIZONA created na-
tion-wide attention during April, after the Dinho Hi Keyah oil field gained its
fourth producer from a 3,000-foot
Pennsylvaniaian high gravity reservoir.

Fifteen operations currently are ac-
tive in the area. Strong lease partici-
pation is underway by a blue ribbon
group of major oil companies, paral-
leling similar participation in the
Utah Basin development in Utah
during recent years. Also, there is ac-
tive leasing by a representative group
of independents from the Rocky
Mountain region.

The new field, located on the major
Lahontan anticline on the Chuska
Mountains range 30 miles southwest
of Farmington, New Mexico, has ap-
parently broken the oil drought for
Arizona. The strike lies on the south-
westerly rim of the San Juan basin of
northeast Arizona, northwest New
Mexico and southwest Colorado.

Fast payout. Because of the dis-
cover, the northeast corner of Arizona
stands an excellent chance to spark a
major exploration program. Economic
factors in the new field certainly point
to such a development:

• Kerr-McGee Oil Corporation has
proven an oil field with high initial
productivity, ranging up to 2,860
bpd per well.
• Exceptionally rapid payout, due
to the excellent shallow well produc-
tivity and the lack of market restric-
tions on output.
• Fast, easy drilling to shallow pro-
ducing depths in the order of 3,000
feet.
• Excellent refining quality of high
gravity crude from the four wells com-
pleted to date, i.e., 45-46° API.
• Proximity to major crude oil
gathering systems in northeast Arizona
and northwest New Mexico.

If production holds up, the new
field will sharply increase Arizona’s

HERCULES' CONE PACKING
LASTS LONGER

PERFORMS BETTER

Longer packing life and superior performance from
Hercules cone-shaped packing result from the unique
method of construction of the Hercules Stuffing Box. This
adjustment feature precludes efficient or economical
use of any other type packing with Hercules Stuffing Boxes.

Hercules split-cone packing is available in a variety
of types to meet every pumping situation, including Soft,
for normal wells; Fellow-Rilled, for pumping where long
strokes and fast cycles are factors; Hard, for wells that
produce large volumes of water; and Special Lubricated,
which apply a self-contained lubricant to the polished
rod in the absence of well fluid.

For full information ask your supply store or write for
literature...and see our pages in the Composite Catalog.

Hercules Tool Department

J. M. HUBER CORPORATION
P.O. Box 200 - Tulsa, Oklahoma 74101
Stuffing Boxes - Casing and Tubing Heads - Tees - Tubing
Clamps and Head Adapters - Casing and Tubing Supports

Huber’s Polished Rod Lubricator
cases pump off or flow off problems

The Huber patented Polished Rod Lubricator reduces shut-
downs and costly replacement of packing rubbers due to lack
of lubrication. It is ideal for problem wells which either pump
off or flow off.

The Lubricator, with a 1-quart capacity, contains a felt wick
which lubricates the polished rod on the up and down strokes.
A corrosion inhibitor can be added to the oil in the reservoir.
The Huber Polished Rod Lubricator is adaptable to all sizes
of polished rods and to all makes of stuffing boxes. It is also
available for dual wells.

Ask your supply store or write for literature...and see our pages
in the Composite Catalog.

Petroleum Equipment Department

J. M. HUBER CORPORATION
P.O. Box 831 - Binger, Texas 79007
Rod Rotators - No-Rust Rod Clamps - Load Indicators
Rotating Scrapers - Dual Completion Stabilizer Equipment
contributes to the nation’s crude supply. The State’s first commercial oil production was discovered in 1937 from Devonian, Mississippian, and Pennsylvanian reservoirs lying on a platform between the San Juan, Paradox, and Black Mesa basins.

Arizona’s average crude oil output prior to the strike was 400 bpd, all in Apache County about 50 miles north of the discovery well (See Woods Oct., July 1967, Page 109). In mid-April, the new field’s first three wells were producing more than 6,000 bpd—and indications were that production was holding up. This is remarkable because of the low permeability in the matrix of the reservoir’s igneous rock, ranging from 25 md and below despite the high porosity ranging from 10-15%.

Navajos helped. The discovery also shows promise of providing the Navajo Indians with much-needed income. As a starter the March 16, 1967 lease sale of 45,241.60 acres of Navajo Indian lands, which brought $801,166.70, marked a major new stimulus to the 16 million-acre area owned in fee by the Navajo Tribe. Another sale will be held in late May or early June.

Until recent years, large portions of the region were never explored by conventional methods due to title litigation that tied up the predominantly Navajo land.

Major Pennsylvanian strike. The new oil field, Kerr-McGee Oil Corporation Navajo 1, was completed last February pumping 634 bpd from Pennsylvania perforations at 3,905-85 ft. The Pennsylvania formation was encountered at 1,305 ft.

The discovery well originally was completed by Kerr-McGee as a dry hole during 1965 at a total depth of 3,869 ft. However, the operator re-entered the hole January 31, 1967, set casing at 3,159 ft, and plugged the well back to 3,056 ft before perforating for production.

Major impetus to the new field was given by Kerr-McGee’s Navajo 2, north confirmation producer one-half mile north of the discovery well. It was completed pumping 2,860 bpd of 44° gravity crude from Pennsylvanian perforations at 3,000-3,114 ft. Actual crude oil gage during the first 24-hour test last March was 2,356.5 barrels.

The third and largest producer, one-half mile east of the discovery well, was completed in mid-April when Kerr-McGee’s Navajo 3-X flowed 2,861 barrels of oil and 300,000 cubic feet of gas daily. Initial gas-oil ratio is very low at 128 cubic feet per barrel of oil. Producing Pennsylvania perforations were made at 3,417-57 ft.

The fourth well, Kerr-McGee’s south offset Navajo 1-B, was producing at commercial rates in mid-April. Operators set 7-inch pipe at 3,850 ft total depth after coming 28 ft. of oil pay.

Meanwhile, Kerr-McGee has announced four new locations for the field, all on 160-acre spacing. Humble Oil and Refining Company has five locations staked around the discovery well. Anadarko Production Company marks the first gas from to enter the play.

Unusual oil reservoir. The producing oil reservoir in the new Pennsylvanian field is unusual in that it produces from an igneous intrusion. This geologic condition has been confirmed by the Oil and Gas Conservation Commission of the State of Arizona and Kerr-McGee Oil Corporation geologists.

It is reported that this may be the only producing oil reservoir in the
The producing oil reservoir is intercalated between a fossiliferous and dolostatigraphic series in the Pennsylvania system.

Electric logging surveys. Electric well logging surveys conducted to date on the Kerr-McGee wells in the Disharst Keyah field include the induction electric bore-hole compensated sonic log and compensated formation density log. This combination of electric logs is designed to determine effective porosity, and secondary porosity index.

Discovery Well Summary

Formation Marker

<table>
<thead>
<tr>
<th>Formation</th>
<th>Depth (ft)</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permian</td>
<td>5,680</td>
<td>+4,034</td>
</tr>
<tr>
<td>Pennsylvanian</td>
<td>1,480</td>
<td>+4,034</td>
</tr>
<tr>
<td>Mississippian</td>
<td>3,412</td>
<td>+4,417</td>
</tr>
<tr>
<td>Devonian</td>
<td>5,922</td>
<td>+4,420</td>
</tr>
<tr>
<td>Cambrian</td>
<td>6,066</td>
<td>+4,904</td>
</tr>
<tr>
<td>Pre-Cambrian</td>
<td>2,300</td>
<td>+3,247</td>
</tr>
</tbody>
</table>

New lease sale. The lease terms under which the next gas and oil lease sale will be held in late May or early June 1967 include the following provisions approved at a meeting of the Navajo Tribal Council, Window Rock, Ariz. on March 29:

1. Basic royalty rate: 16.5% percent.
2. Minimum bonus: $2.50 per acre.
3. Primary lease term: 3 years unless extended by production, with no minimum drilling period required.
4. Lessee shall furnish the Navajo Tribe copies of all reports required to be made to the Supervisor, United States Geological Survey by 30 CFR 221.30 and 30 CFR 221.50.
5. The Chairman of the Navajo Council is authorized to do any and all things necessary to carry out the purposes of this resolution.

Who's leasing. The list of successful bidders at the March 16, 1967 sale held at Window Rock, Ariz., include the following companies:

- Major companies: Pan American Petroleum, Mobil Oil, Humble Oil and Refining, Gulf Oil, Cities Service, Texaco, Atlantic Richfield, Champlin Petroleum, Union Oil of California, Skelly Oil and others.
- Independents: Jack J. Gruenberg, Texas Pacific Oil Co., Kinbark Exploration, Texas Pacific Oil Co., Minzanto, W. T. Blackman, Depuy, Pacific Petroleum, E. R. Richardson, Cado-

Designed to be forgotten

(but as certain as sunrise)

Count on the Mag-tronic Ignition System. So dependable you forget it. We made it with two (count 'em) moving parts. We sealed it because it's breakless and rustless. No rubbing parts. No adjustments to make. It just works. Prolongs spark plug life. Fires fouled plugs. Ignition generator operating speeds up to 3000 RPM feasible. Rides more smoothly. Less advanced system performance all hollow. We'll be glad to prove American Bosch Mag-tronic belongs with your heavy service engines of small or medium size.

AMERICAN BOSCH

AMERICAN BOSCH ARM CORPORATION
9078 MAIN STREET
SPRINGFIELD, MASSACHUSETTS 01107

186

1967
Navajo oil and gas reserves. Also of interest is the discovery of a new field near the Aneth field, which is being explored by various companies, including Santa Fe Drilling Co. and Pablinos. These new discoveries have brought renewed interest in the region and have led to discussions about the potential for increased oil and gas production.

Drilling Completion

Drilling contractors are active in the area, particularly Santa Fe Drilling Co., which is operating in the area near the Aneth field. The company is drilling several new wells, including one located near the Aneth field. The new wells are expected to add significantly to the oil and gas reserves in the region.

CO OFFSHORE

THE PROVEN WAY - WITH SANTA FE

You can rely on Santa Fe's worldwide experience and performance in offshore exploration, drilling, and completion service, no matter where you operate. Our record speaks for itself. We are drilling from fixed platforms in Alaska's Cook Inlet, in the North Sea off the coast of England, and in Trinidad's Gulf of Paria, where we have already drilled over 200 wells. Close to home, we are operating two giant semi-submersible drilling barges - Blue Water 2 along the west coast of the United States and Blue Water 3 in the Gulf of Mexico.

Santa Fe's pioneering work in the offshore industry has earned them the reputation as the world's leading offshore drilling contractor. Their expertise and experience in the offshore industry make them a trusted partner for oil and gas companies worldwide.

Exploration Reaches High Levels in Western Canada

Petroleum exploration in Western Canada continues to boom as a result of the finding of large reserves of oil and gas in the Rainbow-Zama Lake area of northwestern Alberta. The number of geophysical crews at work in Western Canada in recent months has exceeded 100 for the first time in eight years. During January of 1967, the number of crews in operation may have reached 137, according to a recent estimate. That would be the highest level since the winter of 1957, when the Swan Hills field was discovered during the Suez crisis.

Nearly two-thirds of the presently active crews are at work on the Rainbow-Zama Lake area. Geophysical techniques are proving invaluable for locating the narrow pod-like reef typical of the area.

Wells

Since the original Rainbow discovery two years ago, approximately 210 wells, most of them exploratory, have been drilled in the region, with a remarkable well success ratio of close to 75 percent. It is estimated that the industry will drill an additional 65 wells in the area before the spring thaw and break-up of operations.

Pipe Line

Also scheduled before the spring thaw is the completion of an
Arizona: a new exploration

First Arizona well drilled in 1903

New area of interest

Dr. Wilford D. Fye
University of Arizona

Navajo Indian tribes were over $20 million.

Helium ranges from 8 to 9% with the balance of the gas being largely nitrogen.

The present price for raw helium gas is $1.76/Mcf for refined helium gas $33/Mcf

Natural gas and oil transmission and distribution lines network the state.

Arizona geology

Two areas, Arizona is sharply divided into two contrasting areas: the Colorado Plateau and the Basin and Range geologic provinces.

The boundary between them can be considered to enter the eastern edge of Arizona approximately one-third of the distance northward from Arizona-Mexican boundary. The line separating the provinces diagonally northwestern and passes into Utah a short distance east of the Arizona-Nevada boundary. The boundary between the two provinces is often marked by an abrupt cliff sometimes 1,500 ft in height and locally known as the Mogollon Rim.

Between the two provinces there is a transition zone which bears structural and sedimentational characteristics of both of them. Despite
frontier

In the transition, the two provinces are marked by a rather abrupt change in structural characteristics and to a lesser degree by difference in sedimentational features, the latter being more apparent because of the influence structure has had upon the distribution and outcrops of the sediments.

In the Plateau area the surface rocks are almost exclusively Permian and Mesozoic red beds and sandstones; each formation has broad outcrops. South of the rim, formations usually outcrop as either crystalline cores of mountains or as long narrow bands of Paleozoic limestones which form part of the ranges. These outcrop bands are separated by broad, flat areas of Tertiary and Quaternary alluvium.

Sedimentation. Sedimentation in Arizona throughout Paleozoic time was essentially that of a shelf receiving primarily sand, lime, and some silt and mud. From Cambrian to Devonian time Mazatzal land and the Defiance uplands formed a broad, low-lying positive area diagonating southwestward from the Four Corners to possibly as far as southern California. Although by Mississippian time the western part of the uplift had probably vanished, the northeastern Defiance portion remained positive throughout Paleozoic time.

South of this positive area was the Sonoran embayment which entered Arizona near the southeastern corner of the state and extended from Mexico northward into Southeast Central Arizona. This embayment controlled marine sedimentation throughout the Paleozoic era and again in early Cretaceous time.

Along the western edge of the state was the eastern margin of the Cordilleran geosyncline which controlled sedimentation throughout the Paleozoic and most of the Mesozoic era. Its presence in the northwestern corner of the state as well as some 40 miles south of the southwest corner of the state are clear; between these points its history and boundaries in Arizona are obscure.

Lateral basins such as the Paradox basin in the Four Corners area and local uplifts modified the overall pattern of deposition.

Pre-Pennsylvanian sedimentation was predominantly limestone and dolomite with basal sandstone and some shale. In general, the sections are lithologically somewhat similar over much of Arizona and tend to follow the pattern of thickening off of the Mazatzal-Defiance positive area. Their thinning along its flanks is partly due to nondeposition but also to a considerable extent to several periods of post-depositional erosion.

In Pennsylvanian time red beds began to be deposited in northeastern Arizona. Deposition of the red beds and evaporites spread south and westward until by Pennsylvanian time they covered about half of the state. With the exception of the time when the marine Kaibab limestone was being deposited, northeastern Arizona continued to receive red beds, nonmarine sandstone, and other continental and near continental sediments from Pennsylvanian to Cretaceous time. A final marine sequence was deposited in the Four Corners during Upper Cretaceous and early Tertiary time.

Marine sediments. In contrast, the Cordilleran geosyncline continued to receive marine sediments throughout most of the Mesozoic era, but southeastern Arizona received no marine sediments after Permian time except for a short period in Lower Cretaceous time when seas again occupied the Sonoran embayment. Some red beds may have been deposited in the Triassic-Jurassic interval in southeastern Arizona. Red beds and volcanics in great thicknesses were deposited in southeastern Arizona during Upper Cretaceous.
ous and early Tertiary time.
Throughout Arizona Tertiary and Quaternary were times of erosion of highlands and continental deposition in basins.
Structurally, the Plateau province, which is generally over 5,000 ft and may exceed 9,000 ft elevation, is underlain by sedimentary beds which are nearly horizontal but may dip gently northward. Locally the beds are deformed by broad warps and sharp monoclines which may be broken by steep anticline faults.
Structurally and topographically the highest area is the Kaibab plateau through which the Colorado River has cut the Grand Canyon. Eroded to the east and to the west both structure and topography are “stepped down” by a series of successively lower blocks formed by north-south trending monoclines and faults separated by broad subplains.
The Basin and Range province is characterized by numerous linear mountain ranges which trend in a general north-northwest and southwest-southeast direction and which are separated by broad, flat basins. These mountain ranges reach elevations of between 8,000 and 10,000 ft above sea level and range from a few miles to some 50 miles across and from a few miles to over 100 miles in length.
Although the ranges are generally subparallel to each other, there are some transverse and arcuate ranges. The structure within the ranges is usually simple, consisting of crystalline and sedimentary rocks often intricately folded, thrusted, and faulted. The basins are of similar dimensions and shape as the mountains or may be larger. They are filled with Tertiary and Quaternary alluvial sediments which generally conceal the underlying structure.

Petroleum possibilities
Five regions. For the purpose of discussion, Arizona may be divided into northwestern, northeastern, southeastern, and southwestern regions. The northwestern and northeastern region comprise, in general, the plateau province of Arizona. The southeastern region includes that part of Arizona east of Tucson and north of the plateau, and the southwestern region comprises that portion of Arizona west of Tucson and south of the plateau.
The separation into northeastern and northwestern portions is based upon the distinction between the geosynclinal province of northwestern Arizona and the shelf and local basin province of northwestern Arizona. The separation between the southeastern and southwestern provinces is based upon a possible northeast-southwest trending area of thin sedimentation lying between the Sonoran and Cordilleran sedimentation basins and the fact that the geology of the southwestern part of the state is largely concealed.

A fifth region corresponding with the transitional area between the plateau and Basin and Range provinces and trending northwest-southwest through the central portion of the state would be composed of the northern portions of the southeast and southwest regions of Arizona highly dissected.
This fifth region is largely composed of crystalline rocks and is considerably mineralized and locally has numerous volcanic flows. However, this transition zone is included...
in the other regions in this discussion. Its oil potential is very limited.

Northwestern Arizona. In northwestern Arizona a thick marine section of rocks occur. All Paleozoic systems are represented with the possible exception of the Silurian and Ordovician systems.

Overlying this marine section is a Mesozoic section composed primarily of red beds and sandstone units. Erosion has removed most of the Mesozoic units and in places has beveled the section well down into the Paleozoic formations.

Locally, deep canyons have cut entirely through the sedimentary rocks and into the underlying Precambrian crystalline rocks. Oil and gas which might have been present in the sedimentary beds may have escaped through drainage into the canyons. The Paleozoic section thins rapidly eastward, and in some areas entire units may pinch out.

Structurally, the northern part of the area consists of a series of gently tilted beds which at various points have been broken by major vertical faults or monoclinal folds. South and west into the transition area the structure is more complex and consists of large scale faulting and in some areas close folding.

Volcanic rocks between Flagstaff and Seligman cover much of the area, but presumably the underlying sedimentary rocks are similar to those exposed farther north, east, and west. The intrusives which fed the volcanoes in the area locally may have destroyed any oil present. In this area determination of structural traps is difficult because volcanic flows mask all underlying beds.

Oil shows have been reported from a number of formations where their edges have been exposed in the canyon walls or where they have been penetrated by wells. Some production has been secured adjacent to the area in Utah.

The area contains rock units which could serve both as source and reservoir beds. Gently folded and simply faulted structures are present which could serve as traps. Stratigraphic traps may be present also. The possibility that the oil and gas may have escaped by flushing or natural drainage is the main problem in evaluating the petroleum potential of the area.

Northeastern Arizona. In northeastern Arizona, Paleozoic rocks are overlain by Triassic and Jurassic nonmarine red beds and sandstones. These in turn are overlain in the Black Mesa basin by Cretaceous marine beds, and elsewhere locally by Tertiary and Quaternary sediments. The Paleozoic section may be thin or almost absent, as in the Defiance uplift. In other areas the section may be relatively thick as adjacent to the Paradox basin.

The Rocks of Cretaceous age in the Black Mesa basin are relatively thin because of erosion. Some of the extensive Cretaceous sandstones which produce oil and gas in New Mexico are present in the basin, but because of thin cover or exposure of their edges may have lost any oil or gas they may have contained.

The predominantly nonmarine Permian, Triassic, and Jurassic sandstone beds serve as reservoirs for gas which may carry appreciable amounts of helium.

The Apache limestone, which occurs within the Supai red bed sequence is a fossiliferous marine unit which frequently carries shows of gas and oil in wells and at the outcrop. At the outcrop it may be porous, but in the subsurface this porosity may be missing and this may restrict its petroleum potential.

The Hermosa-Paradox formations occur in the extreme northeastern corner of the state. These interfinger Permian-Pennsylvanian limestone, red bed, evaporite, and shale facies have yielded oil and gas in Arizona and elsewhere in the Four Corners.

The pre-Pennsylvanian beds are largely of marine origin. Production of oil has been secured from the Mississippian and Devonian. These formations are widespread over the state and in many places the Devonian section yields at the outcrop a petrolierous odor. There is at least one oil seep from the Devonian.

Numerous anticlines, synclines, and normal faults are present in the area. In the Holbrook basin, which lies north of the rim and south of Black Mesa basin, a number of structural anticlinal trends are evident.

This area is underlain by a salt section which has locally been dis...
solved by ground water with a resulting collapse of the overlying beds and the formation of apparent anticlinal structures. In places these collapse basins and troughs are filled with water and form lakes.

The Hope Buttes and other volcanic fields present in northeastern Arizona may have done no vital damage to the oil potential, but dikes, sills, and subsurface alteration may be found. The extensive volcanic fields in Greenlee and Apache counties mask all clues to subsurface structure and rock composition; it can be assumed that the stratigraphic section and structure are similar to that farther north where no volcanics overlie the sediments.

Alteration around the volcanic theroths and dikes is very limited. The main problem may be the loss of reservoir pressure since the formations have been pierced by the vents through which reservoir gas may have escaped.

In summary, the northeastern part of Arizona contains both source and reservoir beds. Good structural traps are present. In addition, the pinch-out of the pre-Pennsylvanian marine section against the Defiance uplift, reeding against it and other facies changes may give rise to good stratigraphic traps in the area.

The Holbrook basin is the center of helium production in Arizona. Pinta and Navajo Springs domes are the main producing structures although good shows have been found in some wells outside of these areas. To date, all of the production is coming from the Cenozoic sandstone of Pennsian age, but the Shinarump conglomerate of Triassic age has reportedly commercial potential (wells are presently shut in pending completion of processing facilities).

Helium shows also have been found in other porus reservoirs ranging from Devonian to Mesozoic in age.

Southwestern Arizona, East of Tucson and south of the plateau occurs a thick section of Paleozoic marine limestone, sandstone, and shale beds. This section contains representatives of all the Paleozoic systems with the possible exception of the Silurian system which has not been positively identified in the area.

Rocks of Ordovician age are limited to a limestone tongue in extreme eastern Arizona. The most favorable rocks for the occurrence of oil or gas in southwestern Arizona are the Devonian, Mississippian, Pennsylvanian, and Permian marine beds. These are predominantly limestone with some sandstone units. Reefs are probably present in these formations around some of the Paleozoic high areas.

The exposed post-Paleozoic rocks are largely continental red beds of Upper Cretaceous age. These may be overlain by Tertiary rocks which in many places include extensive volcanics. Quaternary alluvium is found in most of the basins. In the southeastern portion of southeastern Arizona, the Lower Cretaceous rocks become marine in character with several well developed limestone horizons. Under proper conditions, these marine Cretaceous beds might carry oil.

Structurally, the rocks show considerable faulting and folding. In places their deformation may be very complex. Also, the section locally may be extensively intruded and mineralized. The entire area is broken into narrow, somewhat west of north trending, upflied mountain blocks separated by down-dropped basins.

Within the basins the same Paleozoic section may be present as is found in the mountains; however, thick accumulations of sand, gravel, and other valley fill has masked the character of the older rocks and concealed their structure. Therefore, within the basins it is difficult to predict how much section may be present, the structural relationships, and whether there has been any mineralization or metamorphism of the sediment.

The depth of the basin fill may be substantial, since a well drilled in one of the basins near San Simon penetrated more than 7,500 ft of alluvium without passing into the underlying bedrock. Elsewhere, the cover may be only a few feet thick.

Southwestern Arizona has an excellent stratigraphic section consisting of a marine section over 10,000 ft thick, containing source beds, gas-prone beds, and facies changes which may produce stratigraphic traps. But structural complexities and concealed subsurface relationships make it difficult to evaluate and pinpoint traps.

Southeastern Arizona, Southwestern Arizona consists essentially of mountain blocks composed of volcanic and crystalline rocks and some metamorphosed sediments. These are separated by broad basins which are filled with Tertiary and Quaternary alluvium and volcanics.

In the few areas of exposure of Paleozoic rocks, the structure is complex and the rocks have been metamorphosed and mineralized to varying degrees. However, some 40 miles southward in Mexico are found some 10,000 ft of Paleozoic and Mesozoic marine strata which are predominantly limestone.

The section is structurally simple and the rocks are unmetamorphosed. It is possible that this section or equivalents extends northward and is present in part of southwestern Arizona under the alluvial cover. Water wells have found over 3,000 ft of alluvium but the preglacial section has not been explored.

Tertiary marine beds occur along the Colorado River and are extensions of marine sediments from the Gulf of California. Their outcrop is limited.

In southwestern Arizona the oil potential is essentially unknown. However, based upon meager information it is not considered to be too great unless under some of the basins unmetamorphosed Cordilleran greyscale sediments occur.

Barber Co., Kansas

Magic Circle Oil Co. has two discoveries under way in Barber County, Kansas.

Indicated gas discovery is 1, T. Knackstedt, C NW NE 18-30S-13W, Spotted 15 miles northwest of Medicine Lodge, it is 2 miles northwest of the Skinner multipay field. Drill-stem test over interval 4,517-52 ft, Vida Ordovician, stabilized with a flow of 6,000 Mcfd after 6 min. Bottom hole pressures measured 1,615 and 1,593 psi. Proposed depth is 4,800 ft. Additional testing of lower zones is planned.

To the east, Magic Circle 1 National Gypsum is an apparent oil